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Background 
Nuclear magnetic resonance is an extremely valuable and versatile tool, finding a wide variety of applications 

in numerous fields of study.  Nonetheless, under typical experimental conditions, the nuclear polarization, P, where: 
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and N+ and N
−
 are the spin populations in the lower and upper energy states, respectively, is at most on the order of 

10-4.  Because of this low polarization at thermal equilibrium, there has been a constant drive for higher field 
systems, improved RF coil designs, and low-noise receiver systems to raise the signal-to-noise ratio (SNR) and 
thereby permit increased spatial, temporal or spectral resolution.  Considering this aspect of the NMR phenomenon, 
the prospect of being able to increase the polarization level by any substantial amount would suggest the possibility 
for a significant improvement of the affected applications.  Such a prospect has recently been realized with the 
development of hyperpolarized substances for MR imaging and spectroscopy, wherein nuclear polarizations 
approaching 100% are possible. 

Biological MR studies with hyperpolarized substances have been focused on three spin-½ nuclei, including the 
non-radioactive noble-gas isotopes 3He [1-4] and 129Xe [5-8], and the carbon isotope 13C as a component of several 
organic molecules [9-12].  The magnetogyric ratios and natural abundance for these three nuclei, and the diffusion 
coefficients and solubility for the two noble gases, are listed in Table I.  Methods used for hyperpolarization include 
optical pumping and spin exchange (3He, 129Xe) [16,17], metastability exchange (3He) [18,19], parahydrogen-
induced polarization (13C) [20,21] and dynamic nuclear polarization (13C) [22,23].  Polarizations of approximately 
50% can be achieved routinely for liter quantities of the noble gases, while the recently reported polarizations for 
13C compounds are about half as much.  A discussion of polarization methods can be found in the syllabus 
contribution by Bastiaan Driehuys for this course, Alternate Mechanisms for Spin Polarization. 

Although the natural abundance of 3He is negligible, it is produced from the nuclear decay of tritium and 
currently can be purchased for approximately 100 USD per liter (STP).  Natural-abundance xenon (26% 129Xe) is 
relatively inexpensive (ca. 10 USD per liter), while isotopically enriched xenon is relatively expensive (ca. 250 USD 
per liter for 70-80% 129Xe).  The cost for 13C depends on the molecule; for example, 1 gram of 13C (99%) urea costs 
ca. 85 USD. 

Both 3He and 129Xe are useful for imaging of gas-filled spaces, such as cracks and voids in materials [24], or 
the lung, colon and sinuses in humans and animals [1-6,8,25,26].  For direct visualization of gas-space morphology, 
3He has the advantage that the magnetogyric ratio (and hence magnetic moment) is 2.8 times larger than that for 
129Xe.  Assuming the thermal noise in the NMR experiment is dominated by losses in the sample or subject, it is 
straightforward to show that the SNR for hyperpolarized substances is directly proportional to the magnetogyric 
ratio, and does not vary with frequency as in the thermal-equilibrium case [1,2,27].  Thus, for equivalent 
experimental conditions, 3He would appear to have a substantial (3-fold) SNR advantage over 129Xe.  Depending on 
the experimental conditions, however, the 30-fold lower diffusion constant [14] and lower magnetogyric ratio of 
129Xe may act in its favor.  For example, the lower diffusion constant would yield less signal attenuation for high-
resolution imaging, and the lower magnetogyric ratio would result in decreased dephasing due to off-resonance 
effects, such as from magnetic-susceptibility interfaces.  On the other hand, the high diffusion constant of 3He may 
prove ideal for characterizing the microstructure of complex gas spaces such as the lung [28-30]. 
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Table I.  Properties of 3He, 129Xe and 13C. 

1. Data are in cm2/s at 1 atm. and 20°C. Helium data from ref. 13; xenon data from ref. 14. 
2. Volume of gas at 1 atm. that dissolves in unit volume of fluid.  Data are for 37°C and natural abundance gases [15]. 

As indicated in Table I, 129Xe gas is soluble in a variety of substances, while 3He gas in general has a very low 
solubility [15].  In particular, xenon is lipophilic, having a high solubility in oils and lipid-containing tissues.  
Another important characteristic of 129Xe is an exquisite sensitivity to its environment that results in an enormous 
range of chemical shifts upon solution (e.g., a range of approximately 200 ppm in common solvents) or adsorption 
[31].  These solubility and chemical shift characteristics make 129Xe a valuable probe for a variety of material 
science and biological applications.  However, for human applications, xenon presents the complication of being a 
general anesthetic in high concentrations (> 70%). 

Although both 3He and 129Xe can be prepared in injectable forms (e.g., biologically-compatible solvent carriers 
for 129Xe [32,33] and microbubbles for 3He [34]) for medical applications such as angiography or organ perfusion, 
13C has the important advantage that its molar concentration in solutions of carbon-based molecules can be at least 
an order of magnitude greater than the concentrations of either 3He or 129Xe in injectable preparations.  Thus, 
hyperpolarized 13C-based compounds provide a superior combination of SNR, spatial resolution and temporal 
resolution for this class of applications [9-12,35].  In addition, since carbon-based molecules play a critical role in 
the functioning of living organisms, the use of appropriate molecules containing hyperpolarized 13C presents the 
opportunity to rapidly and non-invasively assess various metabolic processes [10]. 

Imaging Strategies 
For typical MR imaging conditions, certain characteristics of hyperpolarized nuclei differ substantially from 

those for water or lipid protons in biological tissues.  Hence, these differences play an important role in the selection 
and optimization of appropriate pulse sequences for imaging of hyperpolarized substances.  Compared to water or 
lipid protons in biological tissue, important characteristics of hyperpolarized nuclei include: 

1. Longitudinal magnetization is not at thermal equilibrium in the static magnetic field of the scanner; 

2. Relaxation times are typically much longer; 

3. Diffusivity is much higher (3He and 129Xe gases); 

4. States that have substantially different chemical shifts are in dynamic exchange (129Xe in the lung or in 
other porous materials); and 

5. Longitudinal relaxation rate is directly proportional to the concentration of oxygen (3He and 129Xe gases in 
the lung). 

The first three characteristics have a general impact on the design of pulse sequences for imaging of 
hyperpolarized substances, and so the effect of these characteristics on sequence selection and optimization will be 
discussed in detail below.  The fourth characteristic leads to interesting possibilities for deriving functional 
information about the lung by using 129Xe imaging or spectroscopy.  For information on this topic, the reader is 
referred to references 36-40.  The fifth characteristic makes it possible to measure the partial pressure of oxygen and 
the rate of oxygen consumption in the lung by using 3He imaging.  The reader is referred to references 41-44 for 
information on this topic. 

Ostwald Solubility Coefficient2 
Nucleus Magnetogyric 

Ratio [MHz/T] 
Natural 

Abundance [%] 
Self-Diffusion 
Coefficient1 Water Blood Oil 

3He -32.4 10-4 1.8 0.0098 0.0099 0.018 

129Xe -11.8 26 0.06 0.083 0.14 1.7 

13C 10.7 1 -- -- -- -- 
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Non-equilibrium Magnetization and Long Relaxation Times 
First, we will consider substances for which only characteristics 1 and 2 apply:  hyperpolarized 13C compounds 

and injectable forms of hyperpolarized 3He or 129Xe.  The T1 relaxation times for these substances are typically tens 
of seconds [9-12,32-35,45].  There is relatively little data on the T2 relaxation times, although in many cases 
(excluding those that involve rapid exchange of 129Xe between sites) it is reasonable to expect that the T2 will be a 
significant fraction of the T1.  These long relaxation times favor the use of a single-shot, echo-train acquisition so 
that all (or at least a significant fraction) of the slowly decaying non-equilibrium magnetization can be sampled 
repeatedly before it decays back to thermal equilibrium.  A fully “balanced” (i.e., zeroth gradient moments along 
each axis equal to zero over a TR period) gradient-echo (GRE) pulse sequence such as TrueFISP [46] is well suited 
for this purpose [10-12,35].  In recent years, such fully-balanced pulse sequences have been widely used for 
cardiovascular applications.  But, due to the long relaxation times of hyperpolarized substances, the appropriate 
parameter values for hyperpolarized imaging are different than those for proton imaging.  As illustrated in Figure 1b, 
when the T1 and T2 relaxation times are longer than the acquisition time (e.g., the solid and dotted curves in the 
center and right plots of Fig. 1b), which is often the case for hyperpolarized applications, the maximum signal is 
obtained for flip angles of approximately 180º [10,35].  In contrast, for proton relaxation times of interest in 
biological tissue (e.g., the dashed curve in the left plot of Fig. 1a), maximum signal is obtained for flip angles less 
than 90º.  (Figure 1 shows the predicted on-resonance signal behavior for an ideal TrueFISP-type pulse sequence.  
The technical details of this class of pulse sequences, including the off-resonance signal behavior, are discussed in 
the syllabus contribution by Brian Hargreaves for this course, Fast Gradient Echo Including SSFP.) 

Since the hyperpolarized magnetization is typically several orders of magnitude larger than the corresponding 
thermal-equilibrium value, T1 relaxation of the hyperpolarized magnetization essentially amounts to a decay of the 
magnetization toward zero.  Figure 1 shows signal versus flip-angle curves for both thermal (Fig. 1a) and 
hyperpolarized (Fig. 1b) magnetization.  For relaxation times that are long compared to the acquisition time (e.g., 
the solid and dotted curves), differences between the results for thermal and hyperpolarized magnetization are small.  
However, for shorter relaxation times (e.g., the dashed and dash-dot curves), both the flip angles that result in the 

Figure 1.  On-resonance signal behavior for an ideal TrueFISP-type pulse sequence with a total acquisition 
time of 1 second (TR 4 ms, sequential phase encoding, 256 phase-encoding steps, half-angle preparation 
pulse [49]).  For (a) thermal magnetization and (b) hyperpolarized magnetization, the variation of the 
normalized signal with flip angle is shown for a range of T1 and T2 relaxation times.  The normalized signal 
was calculated as that associated with the central phase-encoding step.  Slice-profile and diffusion effects 
were not included in the calculations. 
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maximum signal and the signal intensities for thermal magnetization differ from those for hyperpolarized 
magnetization.  For a much longer acquisition time than that considered in Figure 1 (e.g., for a 3D acquisition), the 
non-equilibrium nature of the hyperpolarized magnetization would also have a significant influence on the signal 
behavior for the 5000 and 10000-ms T1 relaxation times.  Also note that techniques that require multiple excitations 
with high-flip-angle RF pulses (e.g., conventional spin-echo imaging) are not suitable for the non-equilibrium 
magnetization of hyperpolarized substances unless fresh hyperpolarized material can be supplied to the volume of 
interest throughout the imaging experiment. 

Although the T2 times for hyperpolarized substances are often long compared to those for biological tissues, 
they are nonetheless shorter than the corresponding T1 times.  Thus, if a series of images at discrete time points is 
desired, it is useful to use a DEFT-type configuration [47] so that between image acquisitions the remaining 
hyperpolarized magnetization is stored along the longitudinal axis [10,35,48].  In TrueFISP acquisitions, this is often 
referred to as using a “flip-back” [48] or “restore” RF pulse. 

Given the long T2 relaxation times involved, a single-shot fast/turbo spin-echo pulse sequence (FSE/TSE) can 
also be effective for this imaging application [9], and a flip-back RF pulse can also be used with this pulse sequence.  
However, due to its fully-balanced gradient structure, the TrueFISP pulse sequence is in general more resistant to 
signal loss or ghost artifacts from motion, and thus would likely be preferred over FSE/TSE as long as adequate 
static-field homogeneity can be achieved for the application at hand. 

High Diffusivity 
In addition to non-equilibrium magnetization and long relaxation times, 3He and 129Xe gases also possess the 

third characteristic listed above – high diffusivity.  The self-diffusion coefficients for these gases (Table 1) are 
several orders of magnitude larger than that for water in biological tissues, and as a result even the magnetic-field 
gradients used for spatial encoding can cause substantial signal attenuation.  There are both positive and negative 
aspects to this circumstance.  On the positive side, we can take advantage of diffusion-induced signal attenuation to 
measure the apparent diffusion coefficient (ADC) of the gases in structures such as the lung.  For example, it has 
been shown that the ADC varies depending on the status of the lung microstructure [28-30,50].  While this is an 
important application for hyperpolarized gases, here we will concentrate on negative aspects of diffusion-induced 
signal attenuation secondary to the high diffusivity – limited spatial resolution in echo-train pulse sequences and 
reduced SNR. 

Assuming isotropic, unrestricted diffusion (i.e., measured diffusion coefficients independent of the timing, 
strength and direction of diffusion-sensitization gradients), it is straightforward to calculate the signal attenuations 
that correspond to various pulse-sequence types and parameter-value settings.  However, one of the primary 
applications for hyperpolarized gases is imaging of the lung, which is a complex, restricted diffusion environment.  
For this application, it has been shown that the ADC depends on the timing, strength and direction of diffusion-
sensitization gradients [50-55].  Nonetheless, by using the mathematical formalism appropriate for isotropic, 
unrestricted diffusion, by restricting our attention to a specific time scale (typically a few milliseconds), and by 
choosing ADC values that are representative of the chosen time scale and the condition of the lung tissue, we can 
calculate signal-attenuation values which approximate those obtained in the lung and thus provide useful guidance 
for the design of pulse sequences for imaging the lung.  Even so, the reader should keep in mind the limitations of 
this approach when applying the results discussed below to any particular application of interest. 

To understand how gradient-waveform design affects the resulting diffusion-induced signal attenuation, it is 
useful to recall that the b value associated with a gradient waveform can be calculated as the integral of the squared 
magnitude of the k-space trajectory [56].  This relationship is extremely useful as an intuitive guide for the design of 
pulse sequences; a simplified example is useful to illustrate the concept.  Consider the standard (monopolar) readout 
gradient waveform typically used in a RARE-type [57] spin-echo-train pulse sequence compared to the fully-
balanced readout gradient waveform used in TrueFISP – which of these yields lower diffusion-induced signal 
attenuation?  Figure 2 shows these two gradient waveforms (from the center of a given echo to the center of the next 
echo) along with the corresponding |k|2 curves.  Even though the gradient is active for twice as long for the 
TrueFISP case, the b value (which is the area under the |k|2 curve) corresponding to one echo spacing for the fully-
balanced readout gradient is only one-third of that for the monopolar readout gradient.  For the RARE case, the k-
space trajectory remains at a high spatial frequency between readout events, whereas for the TrueFISP case the 
trajectory returns to the center of k space between readout events, resulting in a much lower b value for the 
TrueFISP case and hence a correspondingly lower signal attenuation. 
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Figure 3 shows calculated signals versus echo number for monopolar (RARE) and balanced (TrueFISP) 
readout gradients and three nominal spatial resolutions, assuming that the echo trains are generated by using 180º RF 
pulses.  We see that diffusion-induced signal attenuation for the balanced readout gradient is substantially less than 
that for the monopolar readout gradient, consistent with the analysis above.  Diffusion-induced signal attenuation 
during the echo train ultimately limits the spatial resolution by widening the point spread function and also decreases 
the SNR for the central portion of k space unless centric phase encoding is used. 

Results from previous studies support these theoretically-predicted differences between the diffusion 
sensitivities of RARE and TrueFISP pulse sequences.  In a recent study of 3He lung imaging by Durand et al. [58], a 
minimum resolution of 6 mm was postulated for a RARE-type pulse sequence based on an attenuation limit of 37% 
for the signal remaining at the end of a 36-echo train.  In contrast, in preliminary evaluations of a TrueFISP-type 
pulse sequence for 3He lung imaging, a nominal spatial resolution of 4 mm was obtained without visible blurring 
compared to a spoiled-GRE pulse sequence, while the SNR for the TrueFISP sequence was 2-3 times that for the 
spoiled-GRE method [59,60]. 

Although diffusion-induced signal attenuation is reduced for TrueFISP compared to RARE, it can nonetheless 
be significant for TrueFISP as illustrated in Figure 3b for a flip angle of 180º.  Because of this additional signal-loss 
mechanism, the flip angle that yields maximum signal for a TrueFISP pulse sequence with sequential phase 
encoding is substantially less for 3He and 129Xe gases than the value of 180º appropriate for hyperpolarized 13C 
compounds.  The decrease in the net transverse magnetization between successive RF pulses caused by diffusion is 
equivalent to that which would be caused by a reduction in the T2 [60,61], and we can thus estimate the effects of 
diffusion by calculating the corresponding effective T2 relaxation time.  The relationship between T2 and maximum 
signal for a TrueFISP pulse sequence and a very long T1 relaxation time is illustrated in Figure 4.  By reducing the 
flip angle below 180º, the fraction of the magnetization that is consumed each repetition is decreased, permitting the 
available magnetization to be distributed more evenly across the desired number of phase-encoding steps.  (Note that 

Figure 2.  Analysis of the diffusion 
sensitivity from a given echo time to the next 
for the readout gradient waveforms in 
simplified (a) RARE and (b) TrueFISP pulse 
sequences.  The RF and readout-gradient 
(GR) timing, and the associated waveforms 
for the squared-magnitude of the k-space 
trajectory (|k|2) are shown for each sequence.  
The b value is the area under the |k|2 curve. 

Figure 3.  Theoretical calculations of normalized signal versus echo number for echo-train pulse sequences 
that use (a) standard (monopolar) and (b) balanced readout gradients.  For both cases, 180º RF pulses were 
used to generate the echo train.  The plots illustrate the diffusion-induced signal attenuations for nominal 
spatial resolutions of 2, 4, and 6 mm that result from an ADC of 0.2 cm2/s, which corresponds to 3He in a 
healthy human lung.  The calculations included the signal-attenuation effects of a centrically-ordered phase-
encoding gradient. 

ba 
Standard (monopolar) readout

ADC 0.2 cm2/s
Balanced readout

ADC 0.2 cm2/s
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this will decrease the rate of signal decline below that shown in Figure 3b for a flip angle of 180º.)  For example, for 
the readout-gradient b value of 0.046 s/cm2 reported in reference 54, diffusion attenuation results in an effective T2 
of approximately 109 ms for an ADC of 0.2 cm2/s (value for 3He in healthy lung tissue for a diffusion time of a few 
ms; it is assumed that the T2 of the gas is much longer than 109 ms) and thus Figure 4 indicates that a flip angle of 
55º would provide maximum signal.  Diffusion-induced signal attenuation from the phase-encoding and slice-select 
gradients can also be viewed as causing a reduction in the effective T2 relaxation time.  For many cases of interest, 
the largest signal attenuation is from the readout gradient. 

Although the spatial resolution that can be obtained for hyperpolarized-gas lung imaging with a standard 
RARE pulse sequence is limited by diffusion-induced signal attenuation as discussed above, potential approaches to 
minimize the diffusion sensitivity for this class of pulse sequences to permit both high SNR and high spatial 
resolution (~3 mm) have been suggested [61,62]. 

Based on the discussion above, a TrueFISP-type pulse sequence may appear to be very appealing for 
hyperpolarized-gas imaging.  However, susceptibility artifacts in the form of dark bands are seen near the 
diaphragmatic border with this technique at the commonly used field strength of 1.5 Tesla [59,60].  It may be 
possible to suppress these artifacts by imaging at lower field strengths, and at such field strengths TrueFISP may be 
the preferred technique for a number of hyperpolarized-gas applications.  Nonetheless, all factors considered, low-
flip-angle, spoiled GRE imaging is currently the most-widely used technique for 3He and 129Xe gases and thus it is 
worthwhile to comment on diffusion effects for conventional GRE as well. 

For many parameter sets of practical interest, the readout gradient is the dominant source of diffusion-induced 
signal attenuation [63].  By assuming an idealized waveform for the readout gradient (ramp times equal to zero, 
equal gradient magnitudes for the prephasing and readout portions of the waveform, and symmetric sampling of the 
echo), a very simple expression for the b value at the echo time can be derived: 

 
( )2

S
2

x3
T

∆

π
=b , [2] 

where ∆x is the nominal spatial resolution and TS is the duration of the data-sampling period.  The corresponding 
signal attenuations at the echo time are shown in Figure 5 for 3He and 129Xe ADC values associated with these gases 
in the healthy human lung and in air.  For all cases considered, substantial signal loss is predicted for nominal spatial 
resolutions less than 1 mm.  The signal attenuation at the echo time can be reduced by using asymmetric sampling of 
the echo [63], spiral sampling or radial sampling. 

Figure 4.  Flip angle for an ideal TrueFISP-type pulse sequence 
with a total acquisition time of 0.5 seconds (TR 4 ms, sequential 
phase encoding, 128 phase-encoding steps, half-angle preparation 
pulse [49], T1 10000 ms) that provides the maximum signal for a 
given T2 relaxation time.  The signal is calculated as that associated 
with the central phase-encoding step. 

Figure 5.  Diffusion-induced signal attenuation at the echo time 
versus nominal spatial resolution for 3He and 129Xe gases in the 
healthy human lung (ADC: 0.2 cm2/s for 3He and 0.04 cm2/s for 
129Xe) or in air (ADC: 0.88 cm2/s for 3He and 0.14 cm2/s for 
129Xe).  Calculations were based on Equation [2] (an ideal GRE 
readout gradient waveform with ramp times equal to zero, equal 
gradient magnitudes for the prephasing and readout portions of 
the waveform, and symmetric sampling of the echo) and a data 
sampling period of 4 ms. 
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The principles regarding diffusion-induced signal attenuation that were discussed in this section apply equally 
to 3He and 129Xe, although 129Xe has a substantially lower diffusion coefficient (Table 1), which results in a lower 
diffusion-induced signal loss for a given b value.  However, in terms of signal loss during the echo train of pulse 
sequences such as TrueFISP or FSE/TSE, exchange of 129Xe within the lung between gas and dissolved phases 
effectively shortens the T2 relaxation time [64], and thus offsets to some extent xenon’s advantage of a lower 
diffusion coefficient. 

Flip Angles and Phase-encoding Order for GRE Pulse Sequences 
As noted above, a low-flip-angle, spoiled GRE pulse sequence is often used for hyperpolarized-gas 

applications.  For this technique, the choices made for the flip angles and phase-encoding order play a critical role in 
the resulting image quality [63,65].  Given the non-equilibrium nature of the hyperpolarized magnetization, one 
obvious choice for the flip angles is the variable flip-angle series that distributes the magnetization uniformly across 
all phase-encoding steps and uses all of the available magnetization [66,67].  However, in practice, the desired flip 
angles might not be obtained due to miscalibration of the transmitter (standardized transmitter calibration procedures 
do not exist for hyperpolarized substances) or an inhomogeneous transmit field (B1) for the RF coil [65].  Figure 6 
illustrates how the signal evolutions for a spoiled GRE pulse sequence that uses either variable or constant flip 
angles are predicted to vary from the desired values when the chosen flip angles are not obtained [68].  During the 
initial part of the acquisition, a 20% variation in the flip angles results in deviations of the signals from their desired 
values that are similar for both variable and constant flip angles.  However, during the latter part of the acquisition, a 
20% variation in the flip angles results in signal deviations for variable flip angles that are much larger than those 
for constant flip angles.  Thus, the point-spread function that corresponds to constant flip angles would be more 
stable against a 20% variation in the flip angles than that which corresponds to variable flip angles.  In addition, if 
sequential phase encoding is used, the signal intensity at the center of k space for constant flip angles is fairly 
insensitive to moderate variations of the flip angle from its desired value [65].  A constant-flip-angle acquisition 
with sequential phase encoding has the disadvantage that the maximum signal (neglecting T1 relaxation) is 14% less 
than that for the ideal variable-flip-angle acquisition.  Considering the B1 variations typically encountered in 
practice, it is unlikely that this advantage of variable flip angles can currently be realized.  Nonetheless, auto-
calibrating methods are under investigation that would permit the desired uniform signal evolution to be obtained 
with variable flip angles regardless of the accuracy of the transmitter calibration [68,69]. 

Figure 6.  Theoretical calculations of signal versus RF pulse number for a spoiled GRE sequence (128 phase
-encoding steps) that uses (a) variable or (b) constant flip-angle RF pulses.  For both cases, the solid line 
denotes the signal evolution for the desired flip angles, and the dotted and dashed lines correspond to flip 
angles that are 20% higher than desired and 20% lower than desired, respectively.  For (a), the desired flip 
angles are those that yield a uniform signal and use all of the magnetization.  For (b), the desired flip angle is 
that which produces the maximum signal halfway through the acquisition (pulse number 64).  Slice-profile, 
diffusion and T1-relaxation effects were not included in the calculations.  The effects of spatial variations in 
the reception sensitivity of the RF coil [65] were also not included in the calculations. 

ba 
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Given that a constant-flip-angle acquisition appears to be a good choice considering practical constraints, we 
next need to choose the value for the constant flip angle and the phase-encoding order.  As illustrated in Figure 6b, 
the application of constant-flip-angle RF pulses results in a gradually declining signal as the non-equilibrium 
magnetization is depleted during the acquisition.  The flip angle should be chosen considering the form of the 
resulting k-space filter and the signal intensity that is obtained for the central portion of k space – both of which 
depend on the phase-encoding order.  Figure 7 illustrates the interplay between signal and resolution (calculated as 
the full-width at half maximum of the associated point spread function, which is the Fourier transform of the k-space 
filter) for centric and sequential phase-encoding orders.  It is easy to show [70] that the peak signal for sequential 
phase encoding occurs for the flip angle: 

 
1n

1
tana

o −

=θ , [3] 

where no is the phase-encoding step corresponding to the center of k space.  For the number of phase-encoding steps 
considered in Figure 7 this flip angle is approximately 7º, which corresponds to a normalized resolution of 0.96 (i.e., 
a very slight blurring).  For centric phase encoding, this same resolution corresponds to a signal intensity that is 
about 20% less than that for sequential phase encoding.  Thus, if our goal is to minimize blurring, a good choice is 
sequential phase encoding with the flip angle provided by Equation [3].  On the other hand, if some blurring can be 
tolerated, higher signal intensities can be obtained with centric phase encoding [63].  For example, for a normalized 
resolution of 0.8, the signal intensity for centric phase encoding is roughly double the maximum signal intensity that 
can be obtained with sequential phase encoding.  A partial-Fourier acquisition can be used with centric phase 
encoding to reduce the blurring associated with a given flip angle [63]. 

There are other important factors that were not included in our discussion above, but should be kept in mind.  
Although T1 relaxation times for hyperpolarized substances are typically very long, T1-induced signal decay can 
become relevant for very long measurements such as 3D acquisitions of the whole lung [71].  Due to the non-
equilibrium nature of the magnetization, the profile for slice-selective pulses varies in shape throughout the 
acquisition [63,65].  This behavior modifies the signal evolution compared to that obtained for an ideal slice profile 
[63,65], and also causes the signal evolution to depend strongly on the gap between slices [65].  Nonetheless, the 
behaviors of the signal evolutions corresponding to ideal and actual slice profiles are often qualitatively similar. 

Closing Remarks 
Certain characteristics of hyperpolarized nuclei differ substantially from those for water or lipid protons in 

biological tissues and thus these differences play an important role in the selection and optimization of appropriate 
pulse sequences for imaging of hyperpolarized substances.  For some techniques and applications, the parameter 
values suitable for imaging of hyperpolarized substances are quite different than those that are typically used for 
proton imaging, while for others, pulse sequences that are commonly used for proton imaging are not suitable for 
use with hyperpolarized substances. 
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